Synthesis of Formates from Alcohols, Carbon Dioxide, and Hydrogen Catalysed by a Combination of Group VIII Transition-metal Complexes and Tertiary Amines

By Yoshio Inoue*, Yoshiyuki Sasaki, and Harukichi Hashimoto

(Department of Applied Chemistry, Faculty of Engineering, Tohoku University, Sendai, Japan)

Summary A novel system composed of group VIII transition-metal complexes and tertiary amines catalyses the formation of formates from alcohols, carbon dioxide, and hydrogen gas. LITTLE is known about the fixation of carbon dioxide into organic compounds catalysed by transition-metal complexes.¹⁻³ Methyl formate has been synthesized from MeOH, CO₂, and H₂ gas in benzene in the presence of a catalyst composed of Ru, Ir, Os, or Pt complexes and BF₈.³

We report here that some formates can be synthesized from alcohols, CO_2 gas, and H_2 gas by a new catalytic combination of group VIII low-valent complexes and tertiary amines. Table 1 shows the catalytic formation of methyl, ethyl, and propyl formate from the corresponding

TABLE 1. Formation of alkyl formates from alcohols, CO₂, and H_2 with [Pd(diphos)₂]-R₃²N catalysts^a

R ₃ ²N				HCO ₂ R ¹ yield (mol/mol Pd)			
3.C. 3Th					$R^1 = Me$,	Et,	Pr ⁿ
Me₃N ^b	••	••	••	••	23	21	21
Et ₃ N					24	15	14
Pr ⁿ ₃ N	••	••		••	33	6	7
Bu ⁿ ₃ N	••	••	••	••	23	6	7
Oct ⁿ ₃ N	••	••	••	••		6	9
N-Methy	lpyrrol	idine				35	
N-Methy	lpiperi	dine		••		31	
1,4-Diazabicyclo[2,2,2]octane						37	

 $^{\rm a}$ [Pd(diphos)₂] (0·1 mmol), R¹OH (250 mmol), R₃²N (25 mmol), CO₂ (25 atm at 25 °C), and H₂ (25 atm at 25 °C); 140 °C, 21 h. $^{\rm b}$ 18 mmol.

alcohols, CO₂, and H₂ with a combination of $[Pd(diphos)_2]$ and several tertiary amines (diphos = Ph₂PCH₂CH₂PPh₂). In the absence of the tertiary amine, this reaction does not occur. Lower trialkylamines are effective as catalyst, higher amines being less effective for ethanol and n-propanol. Cyclic tertiary amines are the most effective. The conditions in Table 1 have not been optimized. Ethyl formate

¹ P. Haynes, L. H. Slaugh, and J. F. Kohnle, Tetrahedron Letters, 1970, 365.

² R. J. Pasquale, J.C.S. Chem. Comm., 1973, 157.

⁸ I. S. Kolomnikov, T. S. Lobeeva, and M. E. Vol'pin, Izv. Akad. Nauk SSSR, Ser. Khim., 1972, 2329.

 TABLE 2.
 Catalytic effect of group VIII metal complexes and Et_aN for ethyl formate synthesis^a

Complex	HCO ₂ Et yield (mol/mol complex)	Complex	HCO2Et yield (mol/mol complex)
$ \begin{bmatrix} H_2 Fe(diphos)_2 \\ [HCo(diphos)_2 \\ [(HCO_2)Co(PPh_3)_3 \\ [Ni(diphos)_2] \end{bmatrix} $	$2 \\ 5 \\ 2 \\ 1$	$\begin{array}{l} [\mathrm{H_2Ru}(\mathrm{PPh}_3)_4] \\ [\mathrm{RhCl}(\mathrm{PPh}_3)_3] \\ [\mathrm{H_3Ir}(\mathrm{PPh}_3)_3] \\ [\mathrm{Pt}(\mathrm{PPh}_3)_4] \end{array}$	26 30 18 4

 a Complex (0·1 mmol), EtOH (250 mmol), Et_3N (25 mmol), CO_2 (25 atm at 25 °C), and H_2 (25 atm at 25 °C); 140 °C, 21 h.

{58 mol per mol of $[Pd(diphos)_2]$ } was formed at 160 °C after 20 h under an initial pressure of 30 atm of CO₂ and 70 atm of H₂ with 0·1 mmol of $[Pd(diphos)_2]$, 100 mmol of Et₃N, and 250 mmol of EtOH; *ca.* 59 mol of H₂O per mol of $[Pd(diphos)_2]$ was also formed, indicating the stoicheio-

$$ROH + CO_2 + H_2 \longrightarrow HCO_2R + H_2O$$
(1)

metry in equation (1). The data in Table 2 show that lowvalent or hydrido complexes of most group VIII transition metals can also be used as the catalyst component and that those of Ru, Rh, and Ir are more effective.

We thank the Ministry of Education, Japan, for partial support.

(Received, 10th June 1975; Com. 651.)